

Buffer Gas Cooling and Optical Cycling of Aluminum Monofluoride Molecules (AIF)

Learn more in our brand-new paper

Simon Hofsäss, Maximilian Doppelbauer, Sid Wright, Sebastian Kray, **New Journal of Physics** The open access journal at the forefront of physics Boris Sartakov*, Jesús Pérez-Ríos, Gerard Meijer, Stefan Truppe Published: 06/29/21 PAPER Fritz Haber Institute of the Max Planck Society, Berlin, Germany Optical cycling of AIF molecules

*General Physics Institute, Russian Academy of Sciences, Moscow, Russia

INTRODUCTION

A magneto-optical trap (MOT) of aluminum monofluoride (AIF) is the starting point for many new applications in fundamental science.

Ultracold science tools:

a) Ultracold collisions

ENERGY DIAGRAM

b) Precision spectroscopy

c) Optical tweezers

d) Molecular quantum array

Loss Channel Analysis

increases the scattering rate

ACKNOWLEDGEMENTS

We acknowledge technical support by the workshops of the FHI and K.P. Vogelgesang, U. Hoppe, H. Haak, M. De Pas.

REFERENCES

[1] Truppe et al., Phys. Rev. A, 100.5 (2019): 052513 [2] Doppelbauer et al., Mol. Phys. 119.1-2 (2020): e1810351 [3] Hofsäss et al., New J. Phys. (2021): 23 075001