

Introduction

Ozonolysis of alkenes

- Important oxidation pathway for alkenes in the troposphere.
- Involved in the production of organic aerosol.
- Involved in OH radical production.

Mechanism of ozonolvsis of alkenes

- Formation of a primary ozonide (POZ).
- Production of a carbonyl and a high-energy carbonyl oxide (Criegee Intermediate).
- Stabilization of the Criegee Intermediate leads to further reactions.

Criegee intermediates

- Criegee intermediates are produced with a broad internal energy distribution.
- High energy Criegee intermediates (tCI) decompose into atmospherically important compounds (e.g. vinoxy, OH radical).

Stabilized Criegee intermediates (sCI) undergo reactions to produce secondary ozonides and organic aerosols.

Low pressure yields of stabilized Criegee Intermediates produced from ozonolysis of a series of alkenes Mixtli Campos-Pineda, Lei Yang and Jingsong Zhang

Method and Apparatus

Summary

- Measurement of consumed SO_2 during scavenging can be used to indirectly measure the yield of sCI.
- The yields of sCIs produced by ozonolysis of a series of alkenes were measured at low pressures.
- Nascent yields were determined by extrapolation at zero pressure and compared with existing data.
- New information of nascent yields can be used as benchmark for theoretical calculations.

Department of Chemistry, University of California, Riverside, CA 92521

Low pressure yields of sCI produced by ozonolysis of a series of alkenes

The yields of stabilized Criegee intermediates were measured at different low pressures and the nascent/zero pressure yields were determined by extrapolation. Endocyclic alkenes show no sCI production at the pressures studied. However, acyclic alkenes show pressure-dependent sCI yields. The sCI yields of trans-2butene and 2,3-dimethyl-2-butene were compared to existing data to assess this new technique.

Drozd, G. T. & Donahue, N. M. The Journal of Physical Chemistry A 115, 4381–4387 (2011). Hakala, J. P. & Donahue, N. M. The Journal of Physical Chemistry A 120, 2173–2178 (2016). Hatakeyama, S., Kobayashi, H. and Akimoto, H. The Journal of Physical Chemistry 88, 4736 (1984).

Nascent sCI yields from ozonolysis of a series of alkenes

W. M. Keck Foundation UC-MEXUS Fellowship

UC RIVERSITY OF CALIFORNIA

Results

- Formaldehyde oxide has a high nascent yield (data from Hatakeyama et al.) due to its relatively high energy barrier for dissociation with respect to the alkenes studied.
- Endocyclic alkene ozonolysis produced effectively no nascent sCI.
- cis-2-butene has a higher nascent total sCI yield than trans-2-butene, perhaps due to different syn- and anti-CI branching ratios, or different POZ conformations.
- There is indication that alkenes larger than 2,3-dimethyl-2-butene will have higher nascent sCI yields.

†Hatakeyama, S., Kobayashi, H., Lin, Z. Y., Takagi, H. & Akimoto, H. The Journal of Physical Chemistry 90, 4131–4135 (1986).

