VMI Photoelectron Spectroscopy Probing the Rotational Cooling Dynamics of Hot Trapped OH lons

<u>A. Shahi^{(a)1}</u>, S. Mishra^(a), D. Gupta^(a), D. Sharma^(a), I. Rahinov^(b), O. Heber^(a), D. Zajfman^(a)

^(a)Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 76100, Israel.

^(b)Department of Natural Sciences, The Open University of Israel, Ra'anana 43107, Israel

Objective

The goal is to probe *in vacuo* time dependent rotational relaxation dynamics of hot molecular ions such as OH⁻ via **spontaneous emission**.

- Relaxation rate can be measured from time dependent intensity of rotational lines ulletwhich is experimentally challenging.¹
- Previous work were able to detect either spectroscopy at a single temperature or ulletdynamics at cryogenic temperature.¹⁻⁵
- Use an Electrostatic Ion Beam Trap (EIBT) equipped with in trap VMI spectrometer to probe rotational cooling dynamics.⁶⁻⁷

Experimental Set-up⁶

- Hot OH ions are trapped inside Electrostatic Ion Beam Trap (EIBT).
- Trapped ions are photodetached using CW 682 nm laser.
- Photoelectron spectra (PES) are collected using VMI in coincidence with the MCP detector outside the EIBT.

Transition

The Detachment Process and Theoretical Model

Rotational Cooling and fitting to Model

Conclusion & Future Direction

- Rotational relaxation dynamics were measured between 0-3 seconds.
- Rotational temperature of hot ions has been estimated.
- Work in progress* towards rate coefficients calculation.