unipg Crossed beams and theoretical study on two reactions relevant to Titan's atmosphere: N(²D) + propyne and N(²D) + allene UNIVERSITÀ DEGLI STUDI DI PERUGIA

Luca Mancini,¹ Gianmarco Vanuzzo,¹ Demian Marchione,¹ Giacomo Pannacci,¹ Pengxiao Liang,¹ Marzio Rosi,² Piergiorgio Casavecchia¹ and Nadia Balucani¹ ¹Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy

²Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, Perugia, Italy

Agenzia

Spazia Italian

isomers to the measured signal (m/z).

- The H-elimination/N-addition channels occur via an indirect mechanism through the formation of a **long-lived complex**.
- Electronic structure calculations: **barrierless reactions** with **a nearly identical PES**...
- ... but the two systems evolve towards **completely different outcomes** as it highlighted by the theoretical **BRs**.
- The main channels for N+CH₃CCH are those that break the molecule into smaller species (CCH+H₂CNH and CH₃+c-C(N)CH), whereas N-addition dominates for the N+H,CCCH, reaction.
- Focussing only on the H-elimination/N-addition channel for both the systems, we found two qualitatively reversed situations: the linear isomer is favoured over the cyclic one for N+CH₃CCH, while the cyclic isomer is favoured over the linear one for N+H₂CCCH₂.

Acknowledgments: This work was supported by the Italian Space Agency (DC-VUM-2017-034, Grant n° 2019-3 U.O Life in Space) and the Marie Sklodowska-Curie project ``Astro-Chemical Origins" (ACO), grant agreement No 811312.

take place efficiently at those altitudes (around 1000 km). By leading to from ref 7. **G**) Titan's lakes; different types of products, these two systems cannot be treated as the *taken from* https:// same in the astrochemical models and their divergent reactivity should apod.nasa.gov/ **be taken into account**. It is noteworthy to highlight that **N+CH₃CCH** is a apod/ ap070207.html

viable route to the synthesis of vinyl cyanide (H₂CCHCN).

H₂CCHCN was recently mapped in Titan's atmosphere and proposed as an ideal candidate to form cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas [5-7] (Figures F and G).

References

[1] V. Vuitton et al., *Icarus*, **324**,120 (2019) [2] N. A Lombardo et al., *Icarus*, **317**, 454 (2019) [3] N. A Lombardo et al., Astrophys. J., 881, L33 (2019) [4] P. Lavvas et al., *Icarus*, **213**, 233 (2011)

[5] J. C.-Y. Lai et al., Astron. J., **154**, 206 (2017) [6] M. Y. Palmer et al., Sci. Adv., 3: e1700022 (2017) [7] Stevenson et al. *Sci. Adv.* **1**:e1400067 (2015)

