

Scattering resonances in cold ND₃-H₂ and ND₃-HD collisions: towards external field control

Stach Kuijpers¹, Jérôme Loreau², Panagiotis Kalaitzis¹, David H. Parker¹, Ad van der Avoird¹, Sebastiaan Y.T. van de Meerakker¹

¹Radboud University, Institute for Molecules and Materials (IMM), Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands ²KU Leuven, Department of Chemistry, Celestijnenlaan 200F, bus 2404, 3001 Leuven, Belgium E-mail: stach.kuijpers@ru.nl

Introduction

Recently it has become possible to image differential cross sections of collisions between NO and He, state-to-state selectively and at energies below 1 K. [1] In this cold regime, the wavelike quantum nature of matter starts to dominate the collision process, leading to rich resonance behaviour that is directly observable as sharp increases in the cross section.

Results

Left: We measured scattering resonances in the zero-field integral cross section of ND_3 colliding with para-H₂ and HD.

Conclusion

We made an important fist step towards enabling external electric field control over scattering resonances by observing those resonances in the zero-field integral cross section of ND₃ colliding with H_2 and HD.

As a next step, we plan to add a level of control to these lowenergy collisions by tuning scattering resonances using external electric fields. To this end, collisions involving ammonia are of great interest, as its large dipole moment makes it susceptible to electric fields.

Right: ND₃ is currently detected above threshold, blurring images of the differential cross section. [2]

- Stark decelerator selects velocity and quantum state of ND_3 .
- 2. 5° collision angle with a beam of H_2 cooled down to 35 K.
- 3. 2+1 REMPI detection of ND₃ at 317 nm
- Velocity Map Imaging (VMI) reveals the final distribution of scattered ND₃.

Next, we will work on realizing a recoil-free VUV+UV REMPI scheme to detect ammonia with high resolution, as well as build a VMI detector capable of generating fields up to 40 kV/cm.

Future: electric fields and VUV

Top: high voltage VMI designed like [3]. Pulsing the extractor grid and repeller creates a strong, homogeneous field of up to 40 kV/cm during the collisions.

Bottom left: conventional 2+1 REMPI scheme. Leaves a 20 m/s recoil to the ion.

Bottom right: proposed detection scheme. VUV is generated by four wave mixing in Xe, making recoil free detection possible.

References

Acknowledgements

A. van Roij, T. Cremers, N. Janssen, M. Balster, R. Baars This work was supported by ERC and NWO

Radboud University Institute for Molecules and Materials

[1] T. de Jongh, et al., *Science* 368.6491 (2020): 626-630. [2] Z. Gao, et al., Phys. Chem. Chem. Phys. 21.26 (2019): 14033-14041. [3] V. Plomp, et al., *Molecular Physics* (2020): e1814437.

