Time-resolved photoelectron imaging using hollow-core photonic crystal fibres and WATT capillaries

Nikoleta Kotsina^{1*}, Chris Brahms¹, Federico Belli¹, Seb Jackson¹, Shou-fei Gao², Ying-ying Wang², Pu Wang², John C. Travers¹ and Dave Townsend^{1,3}

¹Institute of Photogics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

²Beijing Engineering Research Centre of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, 100124, Beijing, China ³Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

*n.kotsina@hw.ac.uk

HC-PCF

HCF

Ø 25 µm

- Low input/output power
- Limited lifetime
- Cladding resonances

Ø 150 µm

- High energy sustainability
- Long durability-extended lifetime
- No cladding resonances
- High transmission losses
- Ultrashort input pulses

Conclusion & Future Work

- Ar filled HC-PCF \rightarrow New source in ultrafast spectroscopy
- Tuneability from visible to VUV
- Care should be taken to manage the Group Velocity Dispersion of generated pulse
- Generate light in the VUV range

Acknowledgments

This work was supported by EPSRC Grants EP/R030448/1 and EP/P001459/1, and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program: Starting Grant agreement HISOL, No. 679649.

0.6

References

Kotsina et al., J. Phys. Chem. Lett., 10(4), 715 (2019) 2) Markos et al., Rev. Mod. Phys., 89, 045003 (2017)

Time-Resolved Photoelectron Imaging

Raw VMI Image

Velocity Map Imaging (VMI) Spectrometer

顀到

+ hv

Rotational timescales: ps Vibrational timescales: fs **Electronic timescales: as**

Reaction co-ordinate

T₁

Molecular Movie

Increasing pump-probe delay

Tuneable UV Generation Light Source Hollow Core-Photonic Crystal Fibre (HC-PCF)

Broadly tuneable over UV/VUV region 350-120 nm

Vastly improved efficiency (2-3 orders of magnitude)

Ultrashort pulses (<10 fs)

*¹ Kotsina *et al.,* J. Phys. Chem. Lett., **10**(4), 715 (2019) *² Markos *et al.*, Rev. Mod. Phys., **89**, 045003 (2017)

TRPEI and HC-PCF Experiment

Styrene Photoelectron Spectrum

Exploiting the time-resolution Incorporate fibre in both pump and probe beams

Tuneability Vis-UV Limited time resolution due to GVD

probe

267 nm,~60 fs

Tuneability Vis-VUV No GVD, pulses as short as 7 fs

> probe ਨੂੰ 267 nm,~7 fs ਹੁੰ

(~)

