Magnetic Manipulation of Rotational Orientation Projection States in Ground State Molecules

Yosef Alkoby ${ }^{1}$, Helen Chadwick ${ }^{1}$, Dagmar Butkovicova ${ }^{1}$, Thomas Carter ${ }^{1}$, Gil Alexandrowicz ${ }^{1}$

1. Department of Chemistry, Swansea University, United Kingdom

INTRODUCTION

Creating spatially anisotropic samples of gas phase molecules to study steric effects in gas-surface collisions has been typically limited to those that can be prepared by laser excitation ${ }^{1}$ or to paramagnetic molecules ${ }^{2}$. Here we present a recently developed technique ${ }^{3}$ which can be used to prepare and manipulate the rotational orientation and nuclear spin projection states of ground-state molecules. We will also show a summary of the results from the first application, the extraction of a scattering matrix for H_{2} scattering from $\mathrm{LiF}(100)^{4}$. These results will provide extremely stringent benchmarks which will help develop and benchmark accurate theoretical models.

EXPERIMENTAL SETUP

Each m_{l}, m_{J} state can be propagated through the (measured)

 defocusses high field seeking states. In the case of ortho- H_{2} (below) ${ }^{5}, m_{1}=-1$ is focussed and $m_{l}=1$ defocussed

The probability each state is transmitted through each hexapole is determined using semi-classical trajectory calculations (above right)

ROTATIONAL ORIENTATION

Rotational orientation projection states define (classically) whether a molecule is rotating like a helicopter or cartwheel. The nuclear spin (I) projection states define the projection of I $\left(m_{1}\right)$ onto the same quantisation axis.

PROJECTION STATES

Signal calculation The signal is the overlap integral of the wavefunction for each
individual m_{l}, m_{J} state at the detector with
over the velocity distribution of the molecular

Magnetic field (Gauss metre)
Hexapole
The detectors are mass spectrometers which measure the flux of molecules that go straight through the machine (if the surface is moved out of the way) or scatter from the surface. Signal measured in the 'straight through' geometry for H_{3} (below left) and 'scattering' geometry for D_{2} scattering from a $\mathrm{Cu}(111)$ surface (below right) are compared with calculated signals below. The contribution each m_{J} state (fo H_{2}) and m_{1} state (for D_{2}) makes to the signal is also shown.

Magnetic field (Gauss metre)

DETERMINING A SCATTERING MATRIX H_{2} SCATTERING FROM LiF(100) ${ }^{4}$
The scattering matrix characterises how the wavefunction changes when the molecules scatter from the surface. The different elements give information about the rotational orientation states that scatter into and from the surface in different directions.

