The design and construction of a near-ambient pressure velocity map imaging apparatus

Tzu-En Chien chie@kth.se

Lea Hohmann lhohmann@kth.se Dan J. Harding djha@kth.se

Department of Chemical Engineering KTH Royal Institute of Technology, Stockholm, Sweden

Presenter: Tzu-En Chien • KTH • PhD July 2021

Introduction

- Velocity map imaging[1] techniques have widely used in molecular dynamics studies or experiments, but due to the working pressure of MCP detectors, the reaction can only occur under high vacuum condition. In this study, we present a new velocity-map imaging system that can be used to study processes occurring at near-ambient pressure.
- The required differential pumping between ionization and detector regions is achieved by the addition of a small aperture. Ions are guided to a hard focus at the aperture by the extraction optics before being velocity mapped by a second set of electrodes.

Methods

- VMI optics are designed to be compact, due to the mean free path decreases with elevating pressure.
- COMSOL multiphysics simulation is performed for VMI configuration and ion trajectory.
- This equipment consists of Laser source, reaction chamber and MCP chamber.
- VMI and DC slicing[2,3] are demonstrated for photodissociation of leaked N₂O at ~2O3 nm, the mean speed and anisotropy parameter are in agreement with the literature data[4].

Next Steps

- This system is being developed as part of a molecular beam surface scattering instrument.
- The technique may be applied in a range of other areas where higher pressures are either interesting or unavoidable, e.g. with liquid jets and surfaces.

Acknowledgments

This work is supported by the Swedish Foundation for Strategic Research (ITM17-0236)

References

- [1] Review of Scientific Instruments 68, 3477 (1997)
- [2] Review of Scientific Instruments **74**,2530 (2003)
- [3] Review of Scientific Instruments **74**, 2495 (2003)
- [4] The Journal of Chemical Physics **110**, 3411 (1999)
- [5] The Journal of Physical Chemistry A **119**, 12255 (2015)

Near-Ambient Pressure achieves with differential pumping and extra electrodes

Simulation

• DC sliced images for photodissociation of leaked N₂O under pressure (a) 8×10^{-7} and (b) 8×10^{-4} mbar. • Intensity distribution and angular distribution from the DC sliced images.

• Plot of mean speed for individual J state of N₂. • The experimental speed distribution can be fit with a flowing Maxwell–Boltzmann distribution[5]:

• Error bars represent T_{para} from fitting. Black points are translation energy calculated from energy partitioning.

Lens Design

The cross section of VMI optics in side view and top view, red line indicates the laser propagation. Side view

• Simulation of N₂⁺ trajectory with 0.03, 0.27 and 0.75 eV of kinetic energy in 8 directions.

• The initial positions are center, 0.5 and 1 mm apart along the laser propagation.

NAP-VMI

$$f(x) \propto v^3 exp^{-} rac{(v-v_0)^2}{lpha^2}, \ lpha^2 = 2k_B T_{para}/m$$