Hybrid Electrostatic Ion Beam Trap (HEIBT): Towards merged beam experiments.

A. Bogot,¹ A. Shahi,^(1,2) M. L. Rappaport,⁽²⁾ O. Lioubashevski,⁽¹⁾ O. Heber,⁽²⁾ D. Zajfman,⁽²⁾ and D. Strasser⁽¹⁾.

¹The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem 91904, Israel ²Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot 7610001, Israel

Introduction:

• We present the HEIBT that implements dichroic mirrors for simultaneous trapping of velocity matched, merged cation and anion beams. ^[1,2] • Similar to the "Zajfman" trap,^[1] lighter ions are trapped between the inner set of electrostatic mirrors,^[1] while the heavier ions oscillate between the outer mirrors and pass through the inner HEIBT mirrors. First experimental ion trapping tests successfully exhibit long, over ~1sec trapping lifetime for the outer trap ion trajectories that pass "through" the inner set of mirrors. The HEIBT will allow a wide range of ion-ion, ion-neutral and ion-laser studies.

For example : Mutual neutralization (MN) experiments as a function of the collision energy and internal ion excitation of molecular and cluster ions.

האוניברסיטה העברית בירושלים

THE HEBREW UNIVERSITY OF JERUSALEM

